https://ejournal.medistra.ac.id/index.php/JFM

Evaluasi Kombinasi Klorokuin dan Resveratrol dalam Menghambat Pembentukan β-Hematin Secara *In Vitro*

Evaluation of The Chloroquine and Resveratrol Combination in Inhibiting β-Hematin Formation In Vitro

Faizal Hermanto^{1*}, Sri Wahyuningsih², Risky Zamzami Adnan³

^{1,2,3}Fakultas Farmasi, Universitas Jenderal Achmad Yani, Jl. Terusan Jend. Sudirman, Cimahi, Indonesia.
*Email: Faizal.hermanto@lecture.unjani.ac.id

Abstrak

Malaria, yang disebabkan oleh parasit Plasmodium, tetap menjadi masalah kesehatan global yang signifikan, diperburuk oleh resistensi obat. Penelitian ini bertujuan untuk mengeksplorasi potensi kombinasi klorokuin (CQ) dan resveratrol dalam menghambat pembentukan β -hematin, sebuah proses kunci dalam mekanisme detoksifikasi parasit. Penelitian diawali dengan persiapan berbagai konsentrasi CQ dan resveratrol, yang kemudian dikombinasikan dan diuji pengaruhnya terhadap penghambatan β -hematin secara *in vitro* menggunakan pembaca ELISA. Hasil penelitian menunjukkan bahwa baik CQ maupun resveratrol secara individu dapat menghambat pembentukan β -hematin pada tingkat sedang. Namun, kombinasi keduanya menunjukkan peningkatan penghambatan yang signifikan, dengan kombinasi yang paling efektif yaitu CQ pada konsentrasi 164,03 μ M dan resveratrol pada 0,98 μ M. Analisis statistik mengkonfirmasi bahwa kombinasi ini jauh lebih efektif dibandingkan dengan penggunaan masing-masing senyawa secara terpisah. Penelitian ini menyimpulkan bahwa kombinasi CQ dan resveratrol dapat meningkatkan penghambatan pembentukan β -hematin, memberikan pendekatan yang menjanjikan untuk meningkatkan efektivitas pengobatan malaria, terutama menghadapi resistensi obat yang semakin meningkat.

Kata kunci: Malaria, β-hematin, Klorokuin, Resveratrol, Resistensi Obat.

Abstract

Malaria, caused by the Plasmodium parasite, remains a significant global health issue, exacerbated by drug resistance. This study aimed to explore the potential of combining chloroquine (CQ) and resveratrol in inhibiting β -hematin formation, a key process in the parasite's detoxification mechanism. The research began with the preparation of various concentrations of CQ and resveratrol, which were then combined and tested for their effects on inhibiting β -hematin in vitro using an ELISA reader. The results showed that both CQ and resveratrol individually inhibited β -hematin formation at moderate levels. However, their combination demonstrated a significant increase in inhibition, with the most effective combination being CQ at 164.03 μ M and resveratrol at 0.98 μ M. Statistical analysis confirmed that this combination was far more effective than using each compound separately. The study concluded that the combination of CQ and resveratrol can enhance the inhibition of β -hematin formation, providing a promising approach to improving malaria treatment efficacy, especially in the face of increasing drug resistance.

Keywords: Malaria, β -hematin, Chloroquine, Resveratrol, Drug Resistance.

1. PENDAHULUAN

Penyakit malaria merupakan penyakit infeksi yang disebabkan oleh parasit *Plasmodium*, yang ditularkan melalui gigitan nyamuk *Anopheles* betina. Parasit ini menyerang sel darah merah dan menyebabkan gejala seperti demam tinggi, menggigil, dan anemia [1]. Terdapat lima spesies *Plasmodium* yang menyebabkan malaria pada manusia, yaitu *Plasmodium falciparum*, *Plasmodium vivax*, *Plasmodium ovale*, *Plasmodium malariae*, dan *Plasmodium*

E-mail : Faizal.hermanto@lecture.unjani.ac.id

Doi : 10.35451/jxpeda42

Received: September 02, 2025. Accepted: October 29, 2025. Published: October 31, 2025

Copyright: © 2025 Faizal Hermanto. Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

^{*} Corresponding Author: Faizal Hermanto, Fakultas Farmasi, Universitas Jenderal Achmad Yani, Cimahi, Indonesia.

knowlesi. Di antara spesies tersebut, *Plasmodium falciparum* merupakan penyebab malaria yang paling banyak tersebar di Afrika, sedangkan *Plasmodium vivax* dominan di luar benua Afrika [2]. Pada tahun 2022, jumlah kasus malaria global diperkirakan mencapai 249 juta kasus, dengan 610.000 kematian akibat penyakit ini [2]. Di Indonesia, malaria masih menjadi masalah kesehatan dengan 443.530 kasus yang tercatat pada tahun 2022, dengan hampir 89% kasus berasal dari Provinsi Papua [3].

Siklus hidup parasit *Plasmodium* dimulai di hati dan kemudian berkembang biak dalam sel darah merah, di mana ia mengandalkan degradasi hemoglobin untuk memperoleh asam amino yang diperlukan untuk pertumbuhannya [4]. Salah satu mekanisme penting dalam pengobatan malaria adalah penghambatan pembentukan β -hematin, yaitu kristal yang terbentuk dari heme yang terlepas selama pemecahan hemoglobin. Klorokuin, obat golongan 4-aminokuinolin, dapat mengganggu pembentukan β -hematin dengan menghambat pembentukan hemozoin dalam vakuola makanan parasit. Klorokuin bekerja dengan menghalangi aktivitas enzim plasmepsin dan falcipain yang memecah globin menjadi asam amino [5]. Berdasarkan penelitian terbaru, klorokuin memiliki nilai IC₅₀ 218,71 μ M dalam menghambat pembentukan β -hematin [6].

Namun, resistensi terhadap klorokuin telah menjadi masalah besar dalam pengobatan malaria, terutama pada *Plasmodium falciparum*. Resistensi ini muncul karena parasit dapat mencegah penumpukan klorokuin dalam vakuola makanan, sehingga penghambatan terhadap polimerasi heme tidak terjadi. Sejak pertama kali ditemukan pada tahun 1973, kasus resistensi klorokuin terhadap *P. falciparum* telah menyebar luas di Indonesia [3]. Resitensi terhadap klorokuin juga sering kali diikuti dengan resistensi terhadap obat antimalaria lainnya, yang menyebabkan tantangan besar dalam pengobatan malaria [7].

Untuk mengatasi masalah resistensi, strategi terapi kombinasi telah banyak diterapkan. Kombinasi obat dengan target kerja yang berbeda dapat meningkatkan efektivitas pengobatan dan mengurangi efek samping. WHO juga merekomendasikan penggunaan kombinasi obat yang memiliki farmakokinetik dan mekanisme kerja yang berbeda [2]. Beberapa kombinasi klorokuin dengan obat lain telah menunjukkan peningkatan aktivitas terapeutik, termasuk kombinasi dengan azitromisin, N-acetyl cysteine, dan artemisin [8–11].

Pengembangan obat baru berbasis bahan alam kini menjadi fokus utama dalam penelitian, terutama untuk mengatasi resistensi parasit terhadap obat malaria yang telah ada. Salah satu bahan alam yang menjanjikan adalah resveratrol, senyawa polifenol yang ditemukan dalam anggur serta beberapa tanaman lainnya. Resveratrol memiliki berbagai aktivitas farmakologis yang beragam, seperti antikanker, antiinflamasi, antioksidan, dan antiprotozoal. Penelitian menunjukkan bahwa resveratrol dapat menghambat pertumbuhan parasit malaria, seperti yang diamati pada infeksi *Plasmodium berghei*, dengan nilai IC₅₀ sebesar 3,912 μM. Selain itu, resveratrol juga dilaporkan dapat mengurangi komplikasi terkait malaria, seperti anemia dan malaria serebral [12–14]. Kajian mekanisme kerja resveratrol mengungkapkan bahwa senyawa ini mampu menghambat pembentukan β-hematin dan mempengaruhi jalur permeabilitas baru dalam parasit [15,16].

Meskipun klorokuin dan resveratrol telah terbukti efektif dalam menghambat pembentukan β -hematin secara terpisah, belum ada penelitian yang mengkombinasikan kedua senyawa ini untuk meningkatkan efek terapeutik dalam pengobatan malaria. Oleh karena itu, penelitian ini bertujuan untuk mengeksplorasi potensi kombinasi klorokuin dan resveratrol dalam menghambat pembentukan β -hematin pada Plasmodium dengan harapan dapat meningkatkan efikasi terapi antimalaria dan memberikan solusi baru terhadap masalah resistensi obat.

2. METODE

Bahan

Klorokuin (Sigma-Aldrich), Resveratrol (Chengdu Biopurify, China), hemin klorida ((Sigma-Aldrich), tween 20, buffer asetat pH 4,8, dimetil sufoksida (DMSO), air suling.

Alat

Alat yang digunakan dalam penelitian ini adalah mikropipet, tip pipet, *plate 96-well*, membrane filter 0,2 μm, inkubator, ELISA reader (Thermo Scientific), Spektrofotometer UV-Visible (Shimadzu UV-1800 Pharmaspec).

Prosedur

Pembuatan larutan hemin

Larutan hemin uji disiapkan dengan menimbang 16,3 mg hemin klorida dan melarutkannya dalam dimetil sulfoksida (DMSO) hingga terbentuk larutan yang jernih. Setelah itu, larutan tersebut disaring menggunakan membran filter 0,2 µm untuk menghilangkan partikel yang tidak larut. Sebanyak 22,2 µL larutan hemin klorida yang telah disaring kemudian dilarutkan dalam 1M buffer asetat pH 4,8 untuk menghasilkan larutan hemin uji yang siap digunakan.

Pembuatan Larutan Uji Kombinasi dan Pembanding Larutan Uji Klorokuin

Larutan uji klorokuin dibuat dengan menimbang 25,7 mg klorokuin dan memasukkannya ke dalam labu ukur 50 mL. Klorokuin kemudian dilarutkan menggunakan DMSO 10% hingga mencapai tanda batas pada labu ukur, setelah itu dilakukan homogenisasi dan sonifikasi selama 5 menit untuk memastikan larutan tercampur sempurna. Larutan yang dihasilkan memiliki konsentrasi 1000 μ M, kemudian dibuat variasi larutan uji klorokuin dengan konsentrasi 164,03 μ M, 109,35 μ M, dan 54,58 μ M. Sebagai pembanding klorokuin disiapkan dengan konsentrasi 218,71 μ M.

Larutan Uji Resveratrol

Larutan resveratrol disiapkan dengan menimbang 22,8 mg resveratrol dan memasukkannya ke dalam labu ukur 100 mL. Resveratrol kemudian dilarutkan dalam metanol pro-analisis hingga mencapai tanda batas pada labu ukur, diikuti dengan homogenisasi dan sonifikasi selama 5 menit untuk memastikan larutan tercampur dengan baik. Larutan yang dihasilkan memiliki konsentrasi 1000 μ M, selanjutnya dibuat variasi larutan uji resveratrol dengan konsentrasi 0,98 μ M, 1,96 μ M, dan 2,93 μ M. Sebagai pembanding resveratrol disiapkan dengan konsentrasi 3,912 μ M.

Larutan Uji Kombinasi Klorokuin dan Resveratrol

Larutan kombinasi klorokuin dan resveratrol disiapkan berdasarkan nilai IC_{50} (konsentrasi yang menghambat 50% pembentukan β -hematin) masing-masing senyawa, yang telah ditentukan dalam studi terdahulu. Nilai IC_{50} klorokuin adalah 218,71 μ M [17], dan IC_{50} resveratrol adalah 3,912 μ M [16]. Larutan kombinasi dibuat dengan variasi konsentrasi sesuai hasil yang diinginkan, sebagai berikut:

Kombinasi 1: klorokuin 164,03 μM (3/4) dan resveratrol 0,98 μM (1/4)

Kombinasi 2: klorokuin 109,35 μM (1/2) dan resveratrol 1,96 μM (1/2)

Kombinasi 3: klorokuin 54,58 μM (1/4) dan resveratrol 2,93 μM (3/4)

Pengukuran β-Hematin

Pengukuran β -hematin dilakukan dengan metode spektrofotometri menggunakan ELISA reader, yang dilakukan sebanyak tiga kali untuk setiap sampelnya. Langkah pertama adalah menambahkan 90 μL larutan hemin uji dan 20 μL larutan uji kombinasi klorokuin dan resveratrol pada setiap well dalam *plate 96-well*, sesuai dengan konsentrasi masing-masing. Setelah itu, proses polimerasi heme dimulai dengan penambahan tween 20 pada konsentrasi 0,02 mg/mL. *Plate 96-well* kemudian diinkubasi pada suhu 37°C selama 250 menit untuk memfasilitasi pembentukan β -hematin. Setelah proses inkubasi selesai, serapan larutan diukur pada panjang gelombang 415 nm dan 630 nm menggunakan ELISA reader untuk mengetahui kadar β -hematin yang terbentuk. Data yang diperoleh berdasarkan pembacaan serapan menggunakan ELISA reader akan dianalisis untuk menghitung persentase pembentukan β -hematin dengan persamaan sebagai berikut:

$$f = \frac{A \ kontrol - A \ Sampel}{A \ kontrol - A \ min}$$

Keterangan:

A_{kontrol}= Nilai serapan heme tanpa tween 20 atau sampel uji.

A_{sample}= Nilai serapan heme dengan penambahan tween 20 dan sampel uji.

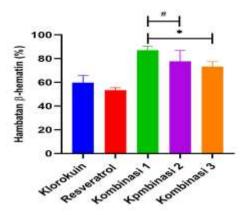
A_{min}= Nilai serapan heme dengan penambahan tween 20 tanpa sampel uji.

f = Fraksi heme yang diubah menjadi *β-hematin*.

Hasil persentase pembentukan β -hematin selanjutnya dilakukan perhitungan persentase penghambatan β -hematin dengan persamaan: % Penghambatan=(1-f) x 100%

Analisis data

Data yang ditampilkan adalah rata-rata \pm SD. Untuk melihat perbedaan yang signifikan antar kelompok, dilakukan analisis statistik *one-way ANOVA* dengan uji lanjutan Tukey menggunakan perangkat lunak GraphPad Prism 10. Nilai p < 0,05 menunjukkan perbedaan yang signifikan.


3. HASIL

Penelitian ini mengkaji potensi kombinasi klorokuin dan resveratrol sebagai penghambat pembentukan β-hematin, yang dapat menjadi target kerja utama dalam terapi antimalaria. Hasil evaluasi penghambatan β-hematin oleh kombinasi klorokuin dan resveratrol ditunjukkan dalam Tabel 1. Uji aktivitas penghambatan β-Hematin memperlihatkan bahwa klorokuin dan resveratrol secara tunggal mampu menghambat pembentukan β-Hematin pada tingkat sedang. Kedua senyawa tersebut memiliki potensi aktivitas antimalaria, meskipun efektivitasnya terbatas bila digunakan secara tunggal. Hasil uji kombinasi antara klorokuin dan resveratrol dengan variasi konsentrasi menunjukkan peningkatan hambatan yang signifikan dibandingkan perlakuan tunggal. Kombinasi dengan klorokuin dalam konsentrasi relatif lebih tinggi yang dipadukan dengan resveratrol pada konsentrasi rendah menghasilkan penghambatan paling optimal. Variasi konsentrasi lainnya tetap memperlihatkan pola peningkatan efektivitas, meskipun tidak setinggi kombinasi 1. Data ini menegaskan bahwa kombinasi kedua senyawa lebih unggul dibandingkan penggunaannya secara tunggal.

Tabel 1. Aktivitas Penghambatan β-Hematin oleh Klorokuin, Resveratrol, dan Kombinasinya

Senyawa	Konsentrasi	Hambatan β-hematin (%)
Klorokuin	218,71 μΜ	59,73 ± 5,97
Resveratrol	3,912 μΜ	$53,48 \pm 1,98$
Kombinasi 1	Klorokuin 164,03 μM dan Resveratrol 0,98 μM	$87,06 \pm 3,33$
Kombinasi 2	Klorokuin 109,35 μM dan Resveratrol 1,96 μM	$77,67 \pm 9,20$
Kombinasi 3	Klorokuin 54,58 μM dan Resveratrol 2,93 μM	$73,32 \pm 4,17$

Berdasarkan hasil analisis statistik yang ditunjukkan pada Gambar 1, Kombinasi 1, Kombinasi 2, dan Kombinasi 3 menunjukkan perbedaan yang signifikan dengan resveratrol, mengindikasikan bahwa ketiga kombinasi senyawa tersebut memiliki kemampuan menghambat pembentukan β -hematin yang lebih tinggi dibandingkan dengan resveratrol. Selain itu, Kombinasi 1 dan Kombinasi 2 menunjukkan perbedaan signifikan dengan klorokuin, menandakan bahwa kedua kombinasi tersebut lebih efektif dalam menghambat pembentukan β -hematin dibandingkan klorokuin.

Gambar 1. Hasil analisis statistik terhadap hambatan pembentukan β-hematin pada berbagai perlakuan. * = P<0.05 terhadap resveratrol, # = P<0.05 terhadap klorokuin.

4. PEMBAHASAN

Malaria, yang disebabkan oleh parasit *Plasmodium*, tetap menjadi salah satu masalah kesehatan global utama, terutama di daerah tropis [18]. Salah satu tantangan utama dalam pengobatan malaria adalah resistensi obat yang berkembang, sehingga mengarah pada pencarian alternatif terapi yang lebih efektif [19]. Salah satu strategi

potensial dalam pengobatan malaria adalah menghambat pembentukan β-hematin (hemozoin), yang terjadi di dalam *food vakuola* parasit *Plasmodium* [20,21].

Hemin, dikenal juga sebagai heme bebas atau ferriheme adalah produk sampingan yang dihasilkan ketika parasit *Plasmodium* mencerna hemoglobin dalam sel darah merah inang. Hemoglobin, yang merupakan protein utama dalam darah, dipecah untuk menyediakan asam amino bagi pertumbuhan parasit. Selama proses ini, heme bebas dilepaskan, yang jika tidak terdetoksifikasi, dapat menjadi toksik dan merusak sel parasit. Untuk mengatasi efek toksik dari heme bebas, *Plasmodium* melakukan proses biomineralisasi, di mana heme bebas diubah menjadi β -hematin atau hemozoin. Proses biomineralisasi ini melibatkan pengikatan heme dengan ion besi, menghasilkan kristal β -hematin yang lebih stabil dan tidak toksik. Pembentukan β -hematin ini terjadi di dalam food vakuola, sebuah organel yang terlibat dalam proses detoksifikasi heme [22].

Karena β -hematin memainkan peran kunci dalam kelangsungan hidup parasit dengan mengurangi toksisitas heme, pembentukan β -hematin menjadi target terapi yang sangat penting dalam pengembangan obat antimalaria. Penghambatan pembentukan β -hematin dapat mengakibatkan akumulasi heme bebas yang berbahaya dalam sel parasit, yang pada akhirnya dapat menghancurkan parasit. Oleh karena itu, penghambatan pembentukan β -hematin merupakan salah satu pendekatan yang menjanjikan dalam mengembangkan terapi malaria yang lebih efektif dan mengatasi masalah resistensi obat yang terus berkembang [23].

Mekanisme kerja klorokuin dalam pengobatan malaria telah lama dikenal, di mana klorokuin menghambat pembentukan β-hematin dengan cara mengikat heme bebas yang dilepaskan selama penguraian hemoglobin. Tanpa pembentukan β-hematin, parasit mengalami keracunan akibat akumulasi heme bebas yang tidak terdetoksifikasi, yang akhirnya menghambat pertumbuhannya [24]. Namun, dengan semakin banyaknya kasus resistensi terhadap klorokuin, muncul kebutuhan untuk mengidentifikasi alternatif terapi yang lebih efektif.

Sementara itu, resveratrol, senyawa polifenol yang dikenal memiliki sifat antioksidan dan antiinflamasi, telah menunjukkan potensi sebagai agen antimalaria [12–14,25–27]. Seiring dengan itu, berbagai penelitian telah mengeksplorasi sifat terapeutik dari antioksidan berbasis tanaman. Sebagai contoh, ekstrak etanol biji buah terap (*Artocarpus odoratissimus*) dan daun bangun bangun (*Plectranthus amboinicus*) menunjukkan aktivitas antioksidan saat diuji menggunakan metode DPPH. Temuan ini signifikan karena antioksidan dapat mencegah stres oksidatif, yang merupakan proses kunci dalam pertumbuhan dan patogenesis parasit. Spesies ini mengandung flavonoid, yang berkontribusi pada penghambatan radikal bebas dan dapat berfungsi sebagai agen tambahan dalam pengobatan malaria. Bukti ini menegaskan pentingnya eksplorasi senyawa berbasis tanaman seperti resveratrol dan turunan Artocarpus, karena dapat meningkatkan efektivitas obat antimalaria tradisional sambil mengurangi perkembangan resistensi obat [28–30].

Beberapa penelitian sebelumnya telah mengeksplorasi mekanisme kerja resveratrol yang lebih kompleks, yang melibatkan beberapa jalur biologis yang berbeda. Salah satu mekanisme yang telah dibahas dalam literatur adalah pengaruh resveratrol terhadap jalur permeabilitas baru yang berfungsi sebagai target kerja antimalaria. Penelitian menunjukkan bahwa resveratrol dapat meningkatkan permeabilitas membran sel parasit, yang pada akhirnya mengganggu fungsi selular dan meningkatkan kerentanannya terhadap pengobatan. Pengaruh ini dapat memperkuat efektivitas terapi antimalaria, karena meningkatkan penetrasi senyawa antimalaria lainnya ke dalam sel parasit.

Selain itu, efek resveratrol terhadap hubungan antara aktivitas antioksidan dan penghambatan pembentukan β -hematin juga telah menjadi topik yang menarik dalam penelitian. Resveratrol diketahui memiliki aktivitas antioksidan yang kuat, yang dapat melindungi sel inang dari stres oksidatif yang dihasilkan oleh proses metabolisme parasit. Pada saat yang sama, resveratrol juga menghambat pembentukan β -hematin, yang merupakan salah satu mekanisme detoksifikasi yang dilakukan parasit *Plasmodium*. Dengan menghambat pengubahan heme bebas menjadi β -hematin, resveratrol menyebabkan akumulasi heme yang toksik di dalam parasit, yang akhirnya menghentikan pertumbuhannya. Hal ini memperkuat bukti bahwa resveratrol dapat berfungsi sebagai agen ganda, baik melalui mekanisme antioksidan maupun melalui penghambatan langsung terhadap pembentukan β -hematin [16].

Dalam penelitian ini, kombinasi klorokuin dan resveratrol pada konsentrasi yang lebih rendah terbukti lebih efektif dalam menghambat pembentukan β -hematin dibandingkan dengan penggunaan masing-masing senyawa secara terpisah pada konsentrasi yang lebih tinggi. Kelebihan dari kombinasi ini adalah adanya efek sinergisitas antara kedua senyawa tersebut. Klorokuin menghambat pengikatan heme bebas, sementara resveratrol tidak hanya menghambat pembentukan β -hematin tetapi juga meningkatkan permeabilitas membran parasit, memperkuat penetrasi obat ke dalam parasit, dan mengurangi efek stres oksidatif yang dihasilkan selama infeksi.

Penurunan dosis yang diperlukan untuk mencapai penghambatan optimal adalah keuntungan besar dari pendekatan kombinasi ini. Menggunakan kombinasi senyawa pada konsentrasi yang lebih rendah dapat mengurangi kemungkinan terjadinya efek samping, mencegah resistensi serta mengurangi biaya pengobatan

[31,32]. Hal ini menunjukkan bahwa penggunaan kombinasi senyawa dengan dosis lebih rendah namun aktivitas meningkat merupakan strategi yang sangat efisien dalam mengatasi masalah malaria, dengan potensi aplikasi yang lebih aman dan lebih terjangkau. Namun, limitasi dari penelitian ini adalah bahwa penelitian hanya dilakukan secara *in vitro*, yang mungkin tidak sepenuhnya menggambarkan kondisi fisiologis yang terjadi pada infeksi malaria di dalam tubuh manusia. Pengujian lebih lanjut pada *Plasmodium falciparum* sangat penting untuk mendapatkan gambaran yang lebih akurat tentang efek kombinasi senyawa ini, khususnya mengenai bagaimana akumulasi heme terjadi di *food vakuola* parasit dalam kondisi yang lebih mendekati realitas biologis.

Penelitian ini mendukung temuan-temuan sebelumnya yang menunjukkan bahwa resveratrol, baik melalui pengaruhnya terhadap jalur permeabilitas baru maupun melalui aktivitas antioksidannya, berperan penting dalam meningkatkan efektivitas pengobatan malaria. Kombinasi resveratrol dengan klorokuin menawarkan peluang besar dalam pengembangan terapi malaria yang lebih efektif, dengan memanfaatkan sinergi antara mekanisme aksi kedua senyawa tersebut. Namun, langkah selanjutnya adalah melakukan uji lebih lanjut pada model *in vivo* untuk mengkonfirmasi hasil ini dalam konteks fisiologis yang lebih realistis.

5. KESIMPULAN

Kombinasi klorokuin dan resveratrol menunjukkan sinergisme yang signifikan dalam menghambat pembentukan β-hematin dibandingkan dengan senyawa tunggal. Meskipun digunakan pada konsentrasi yang lebih rendah, kombinasi ini secara bersama-sama meningkatkan aktivitas penghambatan β-hematin. Penelitian lanjutan perlu dilakukan untuk menguji kombinasi senyawa ini pada model *in vivo* guna mendapatkan gambaran yang lebih komprehensif mengenai efektivitas dan keamanan terapi, serta mengeksplorasi dosis optimal yang dapat digunakan dalam aplikasi klinis.

UCAPAN TERIMA KASIH

Peneliti mengucapkan terima kasih kepada Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) Universitas Jenderal Achmad Yani, Cimahi, atas dukungan pendanaan hibah penelitian internal.

DAFTAR PUSTAKA

- [1] Balaji S, Deshmukh R, Trivedi V. Severe malaria: Biology, clinical manifestation, pathogenesis and consequences. J Vector Borne Dis. 2020;57(1):1–13.
- [2] WHO. World Malaria Report 2024. 2023. 283 p.
- [3] Kemenkes. Laporan Tahunan 2022 Malaria. Kemenkes RI. 2022;1–51.
- [4] Zambare KK, Thalkari AB, Tour NS. A Review on Pathophysiology of Malaria: A Overview of Etiology, Life Cycle of Malarial Parasite, Clinical Signs, Diagnosis and Complications. Asian J Res Pharm Sci. 2019;9(3):226.
- [5] Nqoro X, Tobeka N, Aderibigbe BA. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules. 2017 Dec 1;22(12).
- [6] Sekihara M, Tachibana SI, Yamauchi M, Yatsushiro S, Tiwara S, Fukuda N, et al. Lack of significant recovery of chloroquine sensitivity in *Plasmodium falciparum* parasites following discontinuance of chloroquine use in Papua New Guinea. Malar J. 2018;17(1).
- [7] Plowe C V. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar J. 2022 Dec 1;21(1).
- [8] WHO. Antimalarial Drug Combination Therapy Report of a WHO Technical Consultation. World Heal Organ Geneva WHO. 2001;36.
- [9] Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1).
- [10] Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5).
- [11] Rathore D, McCutchan TF, Sullivan M, Kumar S. Antimalarial drugs: Current status and new developments. Vol. 14, Expert Opinion on Investigational Drugs. 2005.
- [12] Hermanto F, Nur Anisa I, Wahyuningsih S, Alatas F, Suryani S, Rachmawan RL, et al. Antiplasmodium Activity and The Effect of Resveratrol on Index Organs of Mice Infected with Plasmodium berghei ANKA. Pharm J Farm Indones (Pharmaceutical J Indones. 2022;19(1):28.
- [13] Hermanto F, Sari Dewi P, Ahsanul Haq F, Melsandy N, Farmakologi dan Toksikologi B, Farmasi F, et al. Potensi Resveratrol Dalam Mengurangi Keparahan Malaria Serebral Pada Mencit Yang Terinfeksi

- Plasmodium berghei ANKA. Med Sains J Ilm Kefarmasian. 2023;8(4):1481–8.
- [14] Hermanto F, Refiani A, Ahsanul Haq F. Resveratrol Reduce the Severity of Anemia and Thrombocytopenia in *Plasmodium berghei* ANKA-Infected Mice. J Farm Dan Ilmu Kefarmasian Indones. 2023;10(3):266–71.
- [15] Haq FA, Hermanto F, Sutjiatmo AB, Lutfi MH, Farmasi F, Jenderal U, et al. Pengaruh resveratrol terhadap jalur permeabilitas baru sebagai target kerja antimalaria. 2024;4(4).
- [16] Hermanto F, Haq FA, Khasanah R. The effect of resveratrol on the relationship of antioxidant activity and beta-hematin inhibition as an antimalarial action target. J Adv Pharm Technol Res. 2024;15(4):359–63.
- [17] Sucilestari R, Dj DS, Bachtiar I. Uji Aktivitas Antimalaria Fraksi Triterpenoid dari Ekstrak Metanol Daun Artocarpus camansi terhadap *Plasmodium berghei* Secara *In Vivo*. 2013;2(2):196–9.
- [18] Salkeld J, Duncan A, Minassian AM. Malaria: Past, present and future. Clin Med (Northfield II). 2024 Nov 1;24(6):100258.
- [19] Figueiredo A, Rastogi ST, Ramos S, Nogueira F, De Villiers K, de Sousa AGG, et al. A metabolite-based resistance mechanism against malaria. Science. 2025 Jun 12;388(6752):eadq6741.
- [20] Alven S, Aderibigbe B. Combination therapy strategies for the treatment of malaria. Molecules. 2019;24(19).
- [21] Acosta ME, Gotopo L, Gamboa N, Rodrigues JR, Henriques GC, Cabrera G, et al. Antimalarial Activity of Highly Coordinative Fused Heterocycles Targeting β-Hematin Crystallization. ACS omega. 2022 Mar 8;7(9):7499–514.
- [22] Sahoo P, Pathak NK, Scott Bohle D, Dodd EL, Tripathy U. Hematin anhydride (β-hematin): An analogue to malaria pigment hemozoin possesses nonlinearity. Spectrochim Acta Part A Mol Biomol Spectrosc. 2024 Apr 5;310:123902.
- [23] Cruz JN, Mali SN. Antimalarial Hemozoin Inhibitors (β-Hematin Formation Inhibition): Latest Updates. Comb Chem High Throughput Screen. 2022 Jan 18;25(12):1987–90.
- [24] Villarreal W, Castro W, González S, Madamet M, Amalvict R, Pradines B, et al. Copper (I)-Chloroquine Complexes: Interactions with DNA and Ferriprotoporphyrin, Inhibition of β-Hematin Formation and Relation to Antimalarial Activity. Pharmaceuticals (Basel). 2022 Jul 25 [cited 2025 Aug 31];15(8).
- [25] Jimoh A, Abdullahi S, Dawoud F, Jimoh AO, Tanko Y. Evaluation of the effect of resveratrol on parasitaemia in Plasmodium berghei-induced malaria in diabetic male Wistar rats A. 2022;10(1):44–57.
- [26] Dawud FA, Abdullahi S, Abdulazeez J, Usman F, Ayo JO. Effect of resveratrol on haematological changes in diabetic-malaria infected wistar rats. Niger J Biochem Mol Biol. 2023;38(3).
- [27] Schwager J, Seifert N, Bompard A, Raederstorff D, Bendik I. Resveratrol, egcg and vitamins modulate activated t lymphocytes. Molecules. 2021 Sep 1;26(18).
- [28] Aisya Maulidia, Wijayanti S, Mustamin F, Ubrusun J. Testing the Antioxidant Activity of Ethanol Extract on Terap Fruit Seeds (*Artocarpus odoratissimus*) using the DPPH Method. J Farm. 2024 Oct 31;7(1):73–80.
- [29] Kaban VE, Yusmarlisa S. Uji Aktivitas Kandungan Antioksidan Pada Daun Bangun-Bangun (*Plectranthus Amboinicus*) Secara Spektrofotometri Ultraviolet-Visible. Vol. 1, Jurnal Farmasimed (JFM). 2018.
- [30] Handayani F, Fatimah N, Ansyori AK, Sari PE, Agustina I. Aktivitas Antioksidan dan Antibakteri Ekstrak Etanol Daun Selutui Puka (*Tabernaemontana macrocarpa* Jack.) terhadap *Propionibacterium acnes*. J Farm. 2024;7(1):1–6.
- [31] Abdulai SI, Ishola AA, Bewaji CO. Antimalarial Activities of a Therapeutic Combination of *Azadirachta indica, Mangifera indica* and *Morinda lucida* Leaves: A Molecular View of its Activity on *Plasmodium falciparum* Proteins. Acta Parasitol. 2023 Sep 1;68(3):659–75.
- [32] Nguyen TD, Gao B, Amaratunga C, Dhorda M, Tran TNA, White NJ, et al. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat Commun. 2023 Dec 1;14(1).